Worthiness Evaluation of Special Vehicle Chassis in High-altitude Mountainous Environments

ZHU Tao, ZHEN Wei, YAN Shuai, LIU Chengxu

Equipment Environmental Engineering ›› 2024, Vol. 21 ›› Issue (6) : 23-30.

PDF(650 KB)
PDF(650 KB)
Equipment Environmental Engineering ›› 2024, Vol. 21 ›› Issue (6) : 23-30. DOI: 10.7643/ issn.1672-9242.2024.06.004
Special Topic—Environmental Worthiness Design and Testing Technology for Special Vehicles

Worthiness Evaluation of Special Vehicle Chassis in High-altitude Mountainous Environments

  • ZHU Tao1, ZHEN Wei2*, YAN Shuai1, LIU Chengxu1
Author information +
History +

Abstract

The work aims to address the worthiness issues of special vehicle chassis in the unique natural environment of high-altitude mountainous regions and enhance the operational effectiveness and support capabilities of special vehicles in such conditions. By conducting an in-depth analysis of the characteristics of high-altitude mountainous environments and integrating the mission requirements, structural composition, and historical operational data of a specific type of special vehicle chassis, the study identified key subsystems that were significantly affected by environmental factors. An evaluation indicator system suitable for the high-altitude mountainous environment for special vehicle chassis was further established, and the entropy weight-TOPSIS method was applied for a comprehensive assessment and model selection of the chassis under multiple factors. An assessment indicator system was established and the entropy weight-TOPSIS method was applied to effectively evaluate and select special vehicle chassis. Based on new research findings, practical experience and the evaluation process, a series of strategies were proposed to improve the performance of ground weapon systems in high-altitude mountainous regions. The proposed evaluation system and selection method can effectively enhance the adaptability and performance of special vehicle chassis in high-altitude mountainous environments, while also providing scientific decision-making support and practical guidance for the use and maintenance of ground weapon systems in similar settings.

Key words

high-altitude mountainous regions / plateau / special vehicle / evaluation method / entropy weight / environmental worthiness

Cite this article

Download Citations
ZHU Tao, ZHEN Wei, YAN Shuai, LIU Chengxu. Worthiness Evaluation of Special Vehicle Chassis in High-altitude Mountainous Environments[J]. Equipment Environmental Engineering. 2024, 21(6): 23-30 https://doi.org/10.7643/ issn.1672-9242.2024.06.004

References

[1] 全军军事术语管理委员会. 中国人民解放军军语[M]. 北京: 军事科学出版社, 2011.
Military Terminology Management Committee. PLA Military Terms[M]. Beijing: Military science Press, 2011.
[2] 赵斌, 郭赞洪, 唐其环, 等. 浅析低气压对装备及元器件的影响[J]. 装备环境工程, 2016, 13(5): 180-186.
ZHAO B, GUO Z H, TANG Q H, et al.Effects of the Low Air Pressure Environment on Equipment and Component[J]. Equipment Environmental Engineering, 2016, 13(5): 180-186.
[3] 邓博, 甄伟, 薛慧聪, 等. 某型装备载车系统维修性人机工程设计研究[J]. 包装工程, 2023, 44(12): 111-117.
DENG B, ZHEN W, XUE H C, et al.Maintainability Ergonomic Design of a Certain Type Equipment Loaded Vehicle System[J]. Packaging Engineering, 2023, 44(12): 111-117.
[4] 刘瑞林. 装甲车辆环境适应性研究[M]. 北京: 北京理工大学出版社, 2019.
LIU R L.Armored Vehicle Environmental Adaptability Research[M]. Beijing: Beijing Insititute of Technology Press, 2019.
[5] 郑越. 高原高寒环境对通信设备的影响及对策探讨[J]. 通讯世界, 2020, 27(1): 91-92.
ZHENG Y.Influence of Plateau Cold Environment on Communication Equipment and Countermeasures[J]. Telecom World, 2020, 27(1): 91-92.
[6] 赵徐成, 马俊伟, 朱逸天, 等. 保障装备高原环境适应性研究[J]. 装备环境工程, 2014, 11(5): 27-31.
ZHAO X C, MA J W, ZHU Y T, et al.Research on Plateau Environmental Worthiness of Support Equipment[J]. Equipment Environmental Engineering, 2014, 11(5): 27-31.
[7] 雷争军, 严箐, 顾金玲, 等. 高原环境对防空武器装备的影响及其保障措施研究[J]. 现代雷达, 2022, 44(8): 94-99.
LEI Z J, YAN J, GU J L, et al.A Study on the Influence of Plateau Environment on Antiaircraft Weapon Equipment and Its Supporting Measures[J]. Modern Radar, 2022, 44(8): 94-99.
[8] 李海庆, 殷海红, 姜文革, 等. 某重型柴油机高原性能试验[J]. 装备制造技术, 2021(12): 6-8.
LI H Q, YIN H H, JIANG W G, et al.Highland Performance Experimental Study of a Heavy Diesel Engine[J]. Equipment Manufacturing Technology, 2021(12): 6-8.
[9] 白朝谷, 李春波, 陆海, 等. 不同海拔对轻型汽车油耗的影响[J]. 专用汽车, 2023(10): 81-84.
BAI (C/Z)G, LI C B, LU H, et al. Influence of Different Altitudes on Fuel Consumption of Light Vehicles[J]. Special Purpose Vehicle, 2023(10): 81-84.
[10] 文雄, 董慷, 陈强. 提高面向高原地区的汽车发动机机油消耗适应性研究[J]. 装备制造技术, 2015(7): 181-184.
WEN X, DONG K, CHEN Q.Improve the Plateau Adaptability of Automobile Engine Oil Consumption[J]. Equipment Manufacturing Technology, 2015(7): 181-184.
[11] 雷芸, 邱云峰. 基于温度变化的电子元器件参数响应研究[J]. 计算机与数字工程, 2015, 43(1): 155-158.
LEI Y, QIU Y F.Parameter Changes of Electron Components Based on Temperature Variation[J]. Computer & Digital Engineering, 2015, 43(1): 155-158.
[12] 潘锋, 彭立群, 林达文, 等. 低温和频率对橡胶弹性元件刚度性能的影响[J]. 橡胶工业, 2020, 67(5): 323-329.
PAN F, PENG L Q, LIN D W, et al.Influence of Low Temperature and Frequency on Stiffness of Rubber Elastic Components[J]. China Rubber Industry, 2020, 67(5): 323-329.
[13] 刘亨杰, 白文斌, 石靖. 高原低温环境对电站蓄电池的性能影响及对策研究[J]. 移动电源与车辆, 2021, 52(3): 40-42.
LIU H J, BAI W B, SHI J.Study on the Influence of Plateau Low Temperature Environment on the Performance of Power Station Battery and Its Countermeasures[J]. Movable Power Station & Vehicle, 2021, 52(3): 40-42.
[14] 甄伟, 赵涛, 宗健, 等. 某型地面武器系统严寒地区保障问题与对策研究[J]. 装备环境工程, 2023, 20(7): 17-23.
ZHEN W, ZHAO T, ZONG J, et al.Support Problems and Countermeasures of a Certain Ground Weapon System in Frosty Region[J]. Equipment Environmental Engineering, 2023, 20(7): 17-23.
[15] 晋亚铭. 西藏地空太阳辐射观测研究[D]. 拉萨: 西藏大学, 2019.
JIN Y M.Observation and Study on Solar Radiation in Tibet[D].Lasa: Tibet University, 2019.
[16] 黄鹏. 方舱橡胶密封条高原高寒环境适应性研究[D]. 长沙: 国防科技大学, 2020.
HUANG P.Study on Adaptability of Rubber Sealing Strip in Shelter to Plateau Cold Environment[D]. Changsha: National University of Defense Technology, 2020.
[17] 张彬. 高原远程机动安全风险管理研究[D]. 长沙: 国防科技大学, 2018.
ZHANG B.Research on Safety Risk Management of Remote Maneuver on the Plateau[D]. Changsha: National University of Defense Technology, 2018.
[18] 中国人民解放军总装备部. 装备环境工程通用要求: GJB 4239—2001[S]. 北京: 总装备部军标出版发行部, 2001.
General Armaments Department of the People's Liberation Army. General Requirements for Material Environmental Engineering: GJB 4239—2001[S]. Beijing: Military Standard Publishing and Distribution Department of the General Armaments Department, 2001.
[19] 董志华, 唐秀媛, 邵庆新. 高原综合环境及装备适应性评价[J]. 火力与指挥控制, 2022, 47(10): 71-76.
DONG Z H, TANG X Y, SHAO Q X.Comprehensive Plateau Environment and Evaluation of Equipment Adaptability[J]. Fire Control & Command Control, 2022, 47(10): 71-76.
[20] 孟光磊, 李树发, 刘彬斌, 等. 防空预警雷达高原环境适应性评估的自学习模糊灰度方法[J]. 兵工学报, 2022, 43(1): 98-110.
MENG G L, LI S F, LIU B B, et al.Self-Learning Fuzzy Grey Method for Plateau Environmental Adaptability Assessment of Air Defense Early-Warning Radar[J]. Acta Armamentarii, 2022, 43(1): 98-110.
[21] 桑培东, 李文豪. 基于熵权法-TOPSIS的全过程工程咨询业务流程再造措施综合效益评价[J]. 项目管理技术, 2024, 22(1): 98-103.
SANG P D, LI W H.The Comprehensive Benefit Evaluation of Whole Process Engineering Consulting Business Process Reengineering Measures Based on Entropy Weight Method and TOPSIS[J]. Project Management Technology, 2024, 22(1): 98-103.
[22] 刘艳, 刘艺, 陈江攀, 等. 导弹自然环境适应性综合评价方法[J]. 现代防御技术, 2021, 49(3): 123-129.
LIU Y, LIU Y, CHEN J P, et al.Comprehensive Evaluation Method of Missile’s Natural Environment Adaptability[J]. Modern Defence Technology, 2021, 49(3): 123-129.
[23] 付巧峰. 关于TOPSIS法的研究[J]. 西安科技大学学报, 2008, 28(1): 190-193.
FU Q F.Research on TOPSIS Method[J]. Journal of Xi'an University of Science and Technology, 2008, 28(1): 190-193.
[24] 安子樱, 胡淋翔, 李伟, 等. 基于AHP-模糊综合评价法的应急装备灾害适应性评估[J]. 工业安全与环保, 2023, 49(2): 6-9.
AN Z Y, HU L X, LI W, et al.Disaster Environmental Adaptability Assessment of Emergency Equipment Based on AHP-Fuzzy Comprehensive Evaluation Method[J]. Industrial Safety and Environmental Protection, 2023, 49(2): 6-9.
[25] 邓丹青, 杜群阳, 冯李丹, 等. 全球科技创新中心评价指标体系探索——基于熵权TOPSIS的实证分析[J]. 科技管理研究, 2019, 39(14): 48-56.
DENG D Q, DU Q Y, FENG L D, et al.Exploration on the Evaluation Index System of Global Science and Technology Innovation Center: Empirical Analysis Based on Entropy Weight TOPSIS[J]. Science and Technology Management Research, 2019, 39(14): 48-56.
[26] 王陈璐, 张杰, 黄晟青, 等. 基于认知熟悉策略和网络层次分析法集成模型的轻中度失智老人产品设计[J]. 机械设计, 2023, 40(9): 170-176.
WANG C L, ZHANG J, HUANG S Q, et al.Product Design for the Elderly with Mild to Moderate Dementia Based on Cognitive Familiarity Strategy and Analytic Network Process Integrated Model[J]. Journal of Machine Design, 2023, 40(9): 170-176.
[27] 许植涵, 郭毅, 吴浪. 基于改进的熵权-TOPSIS-灰色关联法施工导流方案的风险决策[J]. 科技与创新, 2023(24): 22-25.
XU Z H, GUO Y, WU L.Risk Decision of Construction Diversion Scheme Based on Improved Entropy Weight-TOPSIS-Grey Correlation Method[J]. Science and Technology & Innovation, 2023(24): 22-25.
[28] 赵吉成, 徐丕文. 基于模糊群决策的天津特色食品包装SPA-TOPSIS评价[J]. 包装工程, 2022, 43(17): 213-223.
ZHAO J C, XU P W.SPA-TOPSIS Evaluation of Tianjin Local Characteristic Food Packaging Based on Fuzzy Group Decision[J]. Packaging Engineering, 2022, 43(17): 213-223.
[29] 董素荣, 熊春友, 刘瑞林, 等. 高原环境下柴油机增压技术研究与应用[J]. 军事交通学院学报, 2015, 17(5): 44-48.
DONG S R, XIONG C Y, LIU R L, et al.Study and Application of Turbocharging Technologies for Diesel Engine in Plateau Environment[J]. Journal of Military Transportation University, 2015, 17(5): 44-48.
[30] 周广猛, 刘瑞林, 许翔, 等. 高原环境对车辆动力性的影响及动力提升措施[J]. 装备环境工程, 2014, 11(3): 45-51.
ZHOU G M, LIU R L, XU X, et al.Effects of Plateau Environment on Power Performance of Vehicles and Measures to Improve Power Performance in Plateau[J]. Equipment Environmental Engineering, 2014, 11(3): 45-51.
[31] 岳巍强, 王朔, 刘炳均, 等. 高原高寒地域中重型车辆进气预热起动辅助装置研究[J]. 装备环境工程, 2017, 14(10): 41-46.
YUE W Q, WANG S, LIU B J, et al.Engine Starting Auxiliary Device for Air Intake Preheating of Medium & Heavy Duty Vehicles in Plateau and Cold Area[J]. Equipment Environmental Engineering, 2017, 14(10): 41-46.
PDF(650 KB)

Accesses

Citation

Detail

Sections
Recommended

/